If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-6x-29=0
a = 3; b = -6; c = -29;
Δ = b2-4ac
Δ = -62-4·3·(-29)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-8\sqrt{6}}{2*3}=\frac{6-8\sqrt{6}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+8\sqrt{6}}{2*3}=\frac{6+8\sqrt{6}}{6} $
| -2(3+x)=-3(-1+x) | | x+2=-1+10 | | g/4=1.2 | | 4(2x-7)=5x-6 | | 1+2(3-1)=4x-7 | | 2x-39=9 | | 4(10+x)=2(+23+x) | | 60x-35=245 | | 1.13y/y=1.04 | | 2x-5+8=x | | x+0,2x=21,27 | | 10(3+x)=10 | | (11x+52)=(9x-12) | | -8(3x-)=2x | | 5z-33=112 | | -2/t+4=-10 | | 2^7x+4=31^4+3^4x= | | 5(7+x)=5 | | 5z-33=68 | | 2/7x+4=31/4+3/4x= | | 5x+20=–5x | | -2(3x-)=2x | | 3x-9=99 | | 5(-1+x)=30 | | 5(2+x)=-35 | | 3x-15=114 | | 3/4=y–1/5(8) | | |3x+7|=7x-5 | | x^2-14x-77=0 | | 3x+81=15x+9 | | -2x+2=2x-30 | | 19=h+20 |